thiem16
16. Tại sao nói MPLS là sự kết hợp của định tuyến lớp 3 và CM lớp 2 ?
( MPLS là gì ? Chứng minh )
MPLS có thể được xem như là một tập các công nghệ hoạt động với nhau để phân phát gói tin từ nguồn tới đích một cách hiệu quả và có thể điều khiển được. Nó sử dụng các đường chuyển mạch nhãn LSP để chuyển tiếp ở lớp 2 mà đã được thiết lập báo hiệu bởi các giao thức định tuyến lớp 3.
Để hiểu được MPLS là sự kết hợp của chuyển mạch lớp 2 và định tuyến lớp 3 ta cần hiểu chuyển mạch lớp 2 và định tuyến lớp 3 hoạt động như thế nào
Ø Chuyển mạch lớp 2
Một bridge LAN hoạt động tại lớp 2, lớp liên kết dữ liệu (gồm 2 phân lớp MAC và LLC). Thông thường nó sử dụng 48 bít địa chỉ MAC để thực hiện chức năng chuyển tiếp của nó. Thuật ngữ chuyển mạch lớp 2 thường được dùng để mô tả bridge LAN.
Tuy nhiên thuật ngữ này cũng được dùng để mô tả một chuyển mạch ATM hoặc FR . Vì ATM và FR hoạt động tại lớp 2, do đó chúng cũng được liệt vào các giao thức chuyển mạch lớp 2. Nói một cách chặt chẽ ATM và FR nên được xem xét như tổ hợp của các công nghệ chuyển mạch lớp 2 và 3 bởi vì cả 2 đều bắt nguồn từ X.25 nơi sử dụng tiêu đề lớp 3 cho các hoạt động chính của nó. Nhưng đa số mọi người trong công nghiệp viễn thông sử dụng thuật ngữ chuyển mạch lớp 2 cho ATM và FR, vì vậy tôi cũng theo thực tế này.
Nếu ATM hay FR được sử dụng, các nhận dạng kênh ảo (VCID) của chúng được sử dụng để thực hiện quyết định chuyển tiếp. Các VCID là các nhãn thực sự, mặc dù chúng được quản lý theo cách khác so với các nhãn MPLS
Ø Định tuyến lớp 3
Hoạt động này dùng một router quy ước và chuyển tiếp lưu lượng dựa trên 32 bit địa chỉ IP đích nằm trong mào đầu IP. IP được phân loại như một giao thức lớp 3.
Vấn đề của hoạt động chuyển tiếp IP
Hoạt động chuyển tiếp IP truyền thống tốn chi phí. Khi địa chỉ đích trong mào đầu dữ liệu đồ IP được kiểm tra bởi một router, nó phải đối chọi với bảng định tuyến để nút tiếp theo trên đường tới đích. Hoạt động này yêu cầu việc tìm trong bảng định tuyến rất lớn một lượng lớn các nút ngang cấp trong mạng Internet, một bảng định tuyến có khoảng 50000 lối vào. Mỗi gói vào phải được xử lý ngược lại bảng này. Thêm vào đó việc dùng các mặt nạ mạng con yêu cầu địa chỉ IP đích trong gói lối vào để chống lại mặt nạ trong bảng định tuyến. Nguyên tắc chống lại dài nhất yêu cầu chọn ra router dựa trên cơ sở mặt nạ mà nhiều bít chống lại nhất, một vấn đề vượt qua phạm vi đồ án. Kết quả là chuyển tiếp IP quy ước đơn giản không được dùng trong các mạng lớn vì nó mất quá lâu để xử lý một gói.
Ø Ánh xạ từ lớp 3 tới lớp 2
Phần này tương tự với phân loại luồng và chuyển mạch IP, với địa chỉ lớp 3 được ánh xạ sang nhãn hoặc VCID. Hình 4.4 chỉ ra sự ánh xạ của địa chỉ lớp 3, hoạt động này có thể dùng các chỉ số cổng Internet và PID để lấy một FEC cho thủ tục ánh xạ. Ánh xạ địa chỉ (hoặc FEC) có thể là VCID của ATM hoặc VCID của FR hoặc cho cùng nội dung là nhãn MPLS hoặc thẻ Cisco. Việc ánh xạ xảy ra bởi một router hoặc switch nằm ở biên của mạng
HÌnh 1: Trao đổi từ lớp 3 tới lớp 2 tại LSR lối vào
· LSR lối vào
Hình 1 trên chỉ ra cách một router chuyển mạch thẻ lối vào hoặc router chuyển mạch nhãn xử lý một dữ liệu IP đầu vào. Gói vào được lưu trữ trong hàng đợi để chờ xử lý. Khi bắt đầu xử lý, trường lựa chọn trong mào đầu IP được xử lý để quyết định nếu các sự lựa chọn nằm trong mào đầu. Mào đầu dữ liệu được kiểm tra đối với bất cứ sự thay đổi nào trong quá trình của nó tới nút IP này. Địa chỉ IP đích được kiểm tra. Nếu địa chỉ IP đích là cục bộ, trường IP PID trong mào đầu được dùng để chuyển trường dữ liệu tới modun tiếp theo như TCP, UDP và ICMP. Nếu dữ liệu được quyết định chuyển tiếp truyền qua mạng ATM hoặc FR thì địa chỉ IP lớp 3 trong trường đích của dữ liệu IP sẽ tương đương với một thẻ hoặc một nhãn được lưu trữ trong bảng ở LSR. Sau đó, dữ liệu được đóng gói thành tế bào ATM hoặc khung FR với mào đầu đóng gói gắn với dữ liệu.
· LSR trung gian
Lưu lượng được gửi tới giao diện đầu ra để truyền tới nút tiếp theo, mà ở đó một VCID của ATM hoặc FR hoặc một nhãn được kiểm tra để quyết định việc đảm nhiệm khối dữ liệu này. Việc này được chỉ ra trong hình 2.
Hình 2: Xử lý tại LSR trung gian hoặc LSR lối ra
Nhãn được kiểm tra để quyết định nó là cục bộ hay là liên kết tới nút tiếp theo. Nếu nó là cục bộ thì nó được mở gói thì mào đầu IP được dùng để xử lý lưu lượng thêm vào. Nếu nhãn chỉ định gói phải chuyển tới nút khác, nhãn sẽ dùng chỉ số trong bảng nhãn để tìm gói xử lý bao gồm độ ưu tiên của nó, nút tiếp theo và nhãn mới đó được thay thế cho nhãn cũ.
· LSR lối ra
Cuối cùng một gói cũng được chuyển tới LSR cuối cùng. LSR quyết định giao thức dữ liệu tại nút cuối này nhưng phải có phương pháp để quyết định nhãn một nội bộ thuộc về LSR nội bộ. Xử lý liên kết nhãn nội bộ thực hiện trước khi việc truyền dữ liệu người dùng xảy ra, LSR nội bộ truy cập bảng để định danh nhãn của nó ở mỗi giao diện đầu vào.
Do đó, khi tế bào hoặc khung tới, nhãn nhanh chóng quyết định được nhãn có phải là cục bộ hay không, đó là nếu lưu lượng dừng lại tại nút mà không chuyển tiếp tới nút tiếp theo. Điều này được chỉ ra trong hình 4.5.
Quá trình xử lý không phức tạp lắm. Mào đầu tế bào ATM hoặc FR được xử lý rồi chuyển đi. Mào đầu đóng gói được xử lý để quyết định tương lai của gói người dùng. Dựa vào giá trị của mào đầu đóng gói, gói được chuyển tới đúng modun trong LSR hoặc chuyển tới các thiết bị nôi bộ (như router, server hoặc host) để xử lý tiếp
Bạn đang đọc truyện trên: Truyen2U.Com